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I. INTRODUCTION

Born and local �or ionic� effective charges are well-known
quantities with which to assess chemical bonding and polar-
ization in a material.1,2 A large local effective charge indi-
cates a highly ionic system �for instance, 0.8 in NaCl�, a
medium-sized value points toward an intermediate bonding
case �0.4 in GaAs�, and a small value is associated with a
covalent material �0 in Si�.3,4 On the other hand, Born effec-
tive charge describes the static and dynamic polarizations.5

From the optical properties point of view, large longitudinal-
optic-transverse-optic �LO-TO� splittings are well-known
characteristics of polarizable compounds and associated with
substantial Born effective charges. This is because LO-TO
splitting is directly proportional to charge within Born’s
original formalism.1 Using the LO-TO splitting and high fre-
quency dielectric constant, it is relatively straightforward to
quantify chemical bonding from optical measurements of
high-quality single-crystal samples and compare the ex-
tracted value�s� with first-principles calculations.6–8 Unfortu-
nately, there are many instances when single crystals of a
bulk material are unavailable, either because they cannot be
grown or are not of sufficient size or quality for optical mea-
surements. At the same time, nanoparticles, nanotubes, and
alloys �or composite mixtures� present scientifically compel-
ling problems,9–15 where optical measurements on powdered
materials are the only option, a drawback that complicates
the situation but does not diminish the desirability of obtain-
ing quantitative Born and local effective charge data.

Following Born and Szigeti,1,2 we present an application
of the Lorentz model in which fits to vibrational spectra or a
Kramers Kronig analysis are employed along with several
useful formalisms to quantify microscopic charge in unori-
ented �powdered� materials, assuming that the effects of
ionic displacement and atomic polarizability are superimpos-
able. We demonstrate that this technique can be used to as-
sess chemical bonding and local strain under certain condi-
tions, a development that advances the field of nanoscience
and, at the same time, retains many attractive features of
optical spectroscopy and the traditional Lorentz model. This
paper is organized as follows. Sections II and III review the
situation for single and multiple collinear oscillators. Sec-
tions IV and V present how this approach must be modified
for a randomly oriented �powder� sample. Section VI illus-

trates the use of this technique to quantify Born and local �or
ionic� charge in powdered 2H-MoS2 and its nanoscale ana-
log. Comparison of our analysis of the powdered 2H-MoS2
data with that of the single crystal shows that this approach
accounts almost perfectly for sample orientation.16–18 The
extension to assess size effects in nanoparticle samples dem-
onstrates its utility.16 Our objective is to clearly present the
framework, useful equations, and an application of this
method. The Appendix provides alternate frameworks of the
model.

II. COLLINEAR OSCILLATOR

A. Review of the general formalism

Starting with the Lorentz model for bound charge,5,19 one
has

mẍ + m�ẋ + m�0
2x = qE , �1�

where x is the relative displacement of positive and negative
ions, q is the ionic effective charge, m is the reduced mass, E
is the electric field, � is the damping parameter, and �0 is the
oscillator frequency. This model is applicable to vibrational
modes of isolated oscillators such as those in gas-phase mol-
ecules. Due to dipole-dipole interactions between oscillators
in a solid so-called depolarization effects must be consid-
ered. Here, E has to be replaced by the microscopic field
Emic,

20

E → Emic = E + �
P

�0
, �2�

where Emic is the microscopic field that is really acting on the
oscillator, E is the macroscopic field that should be used to
calculate the dielectric constant, P is the polarization, and �
is the depolarization factor which depends on the topological
arrangement of the oscillators. With this substitution, Eq. �1�
becomes

mẍ + m�ẋ + m�0
2x = q�E + �

P

�0
� . �3�

The overall goal is to find the dielectric constant which
relates E and P. However, in Eq. �3�, there are three un-
known variables: x, E, and P. One more equation is needed
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to find the relationship between E and P. This additional
information will come from the definition of P. Assuming
the polarization P is a linear combination of ionic contribu-
tions Pi=

xq
V , which comes from relative displacements of

ions, and electronic contributions Pe=
�0�

V Emic, which is due
to the distortion of electron clouds, one has

P = Pi + Pe =
xq

V
+

�0�

V
Emic,

where � and V are the polarizability and volume of the os-
cillator, respectively. Substituting the expression for Emic in
Eq. �2�, one has the second important equation

P =
xq

V
+

�0�

V
E +

��

V
P

or

P =
1

1 − ��/V� xq

V
+

�0�

V
E� . �4�

Taken together, Eqs. �3� and �4� are enough for dealing with
single-crystal problems �where there is translational symme-
try�. Next we discuss the dielectric response.

To obtain the expression for the dielectric constant which
relates P and E, we must eliminate P from Eq. �3�. Plugging
Eq. �4� into Eq. �3�, one has

mẍ + m�ẋ + m�0
2x = q�E +

�

�0

1

1 − ��/V� xq

V
+

�0�

V
E�� ,

or

mẍ + m�ẋ + �m�0
2 −

q2�

�0V�1 − ��/V��x =
qE

1 − ��/V
.

For x=x0e−i�t, the solution is

x =

q

m�1 − ��/V�
E

��0
2 −

q2�

m�0V�1 − ��/V�� − �2 − i��

. �5�

For simplicity, we define

�1
2 �

q2�

m�0V�1 − ��/V�
.

Using Eq. �4�, we can write down the polarization

P =
1

1 − ��/V� xq

V
+

�0�

V
E�

=
1

1 − ��/V� q

V

q

m�1 − ��/V�
E

�0
2 − �1

2 − �2 − i��
+

�0�

V
E	 =

�0�/V
1 − ��/V

E

+
q2

mV�1 − ��/V�2

E

�0
2 − �1

2 − �2 − i��
. �6�

Therefore, the dielectric constant is

� = 1 +
P

�0E
= 1 +

�/V
1 − ��/V

+
q2

�0mV�1 − ��/V�2

1

�0
2 − �1

2 − �2 − i��
. �7�

We can immediately see that the Lorentz model in a solid is
modified, compared with that of an isolated oscillator due to
the depolarization effect and the polarizability �when �=0
and �=0, Eq. �7� reduces to the case of an isolated
oscillator�.19 We end this section by summarizing several
useful definitions and expressions that connect measurable
quantities �left-hand side� to microscopic parameters �right-
hand side�. These include the high-frequency dielectric con-
stant, oscillator strength, and TO phonon frequency.

���� � 1 +
�/V

1 − ��/V
, �8a�

A �
q2

�0mV�1 − ��/V�2 , �8b�

�TO
2 � �0

2 − �1
2 = �0

2 −
q2�

�0mV�1 − ��/V�
. �8c�

Clearly, one can extract ����, A, and �TO
2 from the experi-

mental vibrational spectra using an oscillator fit or Kramers
Kronig analysis and use these quantities to extract the micro-
scopic parameters.19 In other words, once ���� and A are
measured, one can derive � and q using Eqs. �8a� and �8b�.
Note that

S �
A

�TO
2

is the dimensionless oscillator strength.

B. Evaluating the effective charges

Ionic effective charge �also called local effective charge�
q is an important quantity because it quantifies the ionicity. It
is distinct from the Born effective charge as discussed below.
The most straightforward way to extract ionic effective
charge from oscillator strength is to use Eq. �8b�

q2 = �0mV�1 − ��/V�2A . �9�

Thus, quantitative information about bond covalency/ionicity
can be extracted from knowledge of oscillator strength and
polarizability.

In the literature, we often find Born effective charge de-
fined as21

qB
2

�0mV
= ������LO

2 − �TO
2 � , �10�

which, as shown in the Appendix, is equivalent to

qB
2

�0mV
= A =

q2

�0mV�1 − ��/V�2 . �11�

Therefore Born and ionic effective charges are related as
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qB
2 =

q2

�1 − ��/V�2 . �12�

Note that Born effective charge takes into account the com-
bined contributions of ionic displacement, electron-cloud de-
formation, and depolarization effects, whereas ionic effective
charge only represents the charge of the ions.

III. MULTIPLE COLLINEAR OSCILLATORS

When there is more than one oscillator �as in most real
materials�, one has to go back to the polarizability 
Eq. �6��
and add a mode index j. This yields

Pj =
� j/V

1 − � j� j/V
E +

qj
2

mjV�1 − � j� j/V�2

E

�0
2 − �1,j

2 − �2 − i� j�

�13�

and

�1,j
2 �

qj
2� j

�0mjV�1 − � j� j/V�
.

Then the dielectric constant and other definitions can be
expanded as

� = 1 +

�
j

Pj

�0E
= 1 + �

j

� j/V
1 − � j� j/V

+ �
j

qj
2

�0mjV�1 − � j� j/V�2

1

��0
2 − �1,j

2 � − �2 − i� j�
= 1

+ �
j


� j��� − 1� + �
j

Aj
1

�TO,j
2 − �2 − i� j�

, �14�

where

� j��� = 1 +
� j/V

1 − � j� j/V
, �15a�

Aj =
qj

2

�0mjV�1 − � j� j/V�2 , �15b�

�TO,j
2 = �0,j

2 − �1,j
2 = �0,j

2 −
qj

2� j

�0mjV�1 − � j� j/V�
. �15c�

Note that polarizability represents the high-frequency dielec-
tric response of the electron cloud. Therefore, � should be
labeled according to the polarization direction, although for
simplicity, we label this quantity with the mode index.

IV. TILTED OSCILLATOR

If the electric field is not perfectly aligned with the direc-
tion of motion of a certain mode, the observed oscillator
strength will be reduced from its intrinsic value. This can be
easily understood by considering the extreme case: when the
light is polarized perpendicular to a particular mode, this
mode will not contribute to the oscillator strength at all.

Thus, if one directly employs the formulas for local ionic and
Born effective charges in Sec. II B without modification, the
results will be unphysical. This is because a tilted oscillator
provides only a component of the total intrinsic oscillator
strength. Instead, we must go back to Sec. II A and rederive
a set of formulas that take orientation into account.

We can employ a modified version of Eq. �5� to account
for the effect of a tilted oscillator

x�	� =

q

m�1 − ��/V�
E cos�	�

�0
2 − �1

2 − �2 − i��
. �16�

Hence,

P�	� =
1

1 − ��/V� xq

V
+

�0�

V
E cos�	�� =

�0�/V
1 − ��/V

E cos�	�

+
q2

mV�1 − ��/V�2

E cos�	�
�0

2 − �1
2 − �2 − i��

, �17�

and

��	� = 1 +
P�	�cos�	�

�0E
= 1 +

�/V cos2�	�
1 − ��/V

+
q2

�0mV�1 − ��/V�2

cos2�	�
�0

2 − �1
2 − �2 − i��

. �18�

Here, 	 is the angle between the electric field and the direc-
tion in which oscillator intensity is maximum. If a measure-
ment is done on a sample with a distribution of orientations
�	��, the result is appropriately averaged as

�̃ = ���	�� = 1 +
�/V�cos2�	��

1 − ��/V

+
q2

�0mV�1 − ��/V�2

�cos2�	��
�0

2 − �1
2 − �2 − i��

. �19�

In this case, the observed parameters are related to the mi-
croscopic parameters as

�̃��� = 1 +
�/V�cos2�	��

1 − ��/V
, �20a�

Ã =
q2

�0mV�1 − ��/V�2 �cos2�	�� , �20b�

�̃TO
2 = �0

2 − �1
2 = �0

2 −
q2�

�0mV�1 − ��/V�
. �20c�

Here, the brackets � � indicate directional averaging.

V. MULTIPLE TILTED OSCILLATORS

Most isotropic samples of real materials have several vi-
brational modes. We can write down the dielectric constant
for the case of multiple tilted oscillators by combining Eqs.
�13� and �17�

EVALUATION OF BORN AND LOCAL EFFECTIVE… PHYSICAL REVIEW B 80, 014303 �2009�

014303-3



��	 j�� = 1 + �
j

P�	 j�cos�	 j�
�0E

= 1 + �
j

� j/V
1 − � j� j/V

cos2�	 j�

+ �
j

qj
2 cos2�	 j�

�0mjV�1 − � j� j/V�2

1

��0
2 − �1,j

2 � − �2 − i� j�
,

�21�

and

��	 j�� = 1 + �
j


� j��� − 1�cos2�	 j� + �
j

Aj
cos2�	 j�

�TO
2 − �2 − i��

.

�22�

Note that the 	 j� are related to an oscillator’s polarization
direction. Therefore, the number of independent 	 j may be
less than the number of modes. Hence,

�̃ = ���	 j��� = 1 + �
j


� j��� − 1��cos2�	 j��

+ �
j

Aj
�cos2�	 j��

�TO,j
2 − �2 − i� j�

= �̃���

+ �
j

Aj
˜

1

�TO,j
2 − �2 − i� j�

, �23�

where the observed �apparent� parameters are

�̃��� = 1 + �
j

� j/V�cos2�	 j��
1 − � j� j/V

= 1 + �
j


� j��� − 1��cos2�	 j��

�24a�

Aj
˜ =

qj
2

�0mjV�1 − � j� j/V�2 �cos2�	 j�� �24b�

�̃TO,j
2 = �0,j

2 − �1,j
2 = �0,j

2 −
qj

2� j

�0mjV�1 − � j� j/V�
. �24c�

If all vibrational features can be resolved in frequency

space, �̃��� and Aj
˜ can be determined from a model oscilla-

tor fit or a Kramers Kronig analysis. At the same time, the � j
can be estimated from the crystal structure.20 However, one
cannot use the N+1 equations given by Eqs. �24a� and �24b�
to solve for 3N unknowns. The latter includes � j, qj, and
�cos2�	 j��. Even if in some cases, we know �cos2�	 j�� �per-
haps from an independent x-ray measurement�, there are still
2N unknowns to determine from only N+1 equations. Addi-
tional information is needed to constrain the system.

Despite this limitation, vibrational spectroscopy of unori-
ented powdered samples can still be an important tool for
extracting microscopic charge and bonding information.
There are two important cases.

Case 1: The system is simple enough to have N+1=2N.
For example, in rocksalts, the crystal symmetry is cubic
��cos2�	 j�� is always 1/3�, and there is only one vibrational
mode �N=1�. Thus powder spectroscopy is sufficient to de-
termine all of the microscopic parameters for systems such
as NaCl or MnO.

Case 2: Occasionally, some variables are already known,
say, from another method, sample, or similar compound, so
that the total number of known variables can be reduced to
be equal to or less than N+1. Recent work on MoS2 nano-
particles provides a good example.16 Here, the interplane os-
cillator strength is identical to that of the single crystal.
Therefore, it is reasonable to assume that the corresponding
polarizability and charge are both the same for the nanopar-
ticles as they are in the single crystal, a coincidence that
reduces the number of unknowns and makes the extraction of
intraplane charge bonding information possible. We elabo-
rate on the case of MoS2 below.

VI. DYNAMICS OF A MODEL TRANSITION METAL
DICHALCOGENIDE: TESTING OUR APPROACH

In order to test the workability of this approach, we
elected to investigate a model transition-metal dichalco-
genide. The bulk material, 2H-MoS2, belongs to the
P63 /mmc space group 
Fig. 1�a��.22 One consequence of this
layered architecture is the low-dimensional electronic struc-
ture which consists of strong bonding within layers and weak
van der Waals interactions between layers.23 Each MoS2 slab
contains a layer of metal centers, sandwiched between two
chalcogen layers, with each metal atom bonded to six chal-
cogen atoms in a trigonal prismatic arrangement. There are
two infrared active E1u and A2u vibrational modes.23 Sche-
matic views of these displacement patterns are shown in Fig.
1�a�. The E1u and A2u symmetries characterize intralayer and
interlayer motions, respectively. We begin with demonstrat-
ing the self-consistency of the theory by analyzing the oscil-
lator orientation and predicting the observed optical param-
eters. We then extend our technique to the chemically
identical but morphologically different nanoparticles to illus-
trate the consequences of finite size, strain, and curvature.

Figure 1�b� displays a close-up view of the reflectance of
2H-MoS2.24 As expected for a pressed powder sample, both
the E1u and A2u modes are clearly observed. At normal inci-
dence, the dielectric function is related to reflectance as

R��� = ������ − 1
����� + 1

�2

. �25�

Equation �25� is formally valid for single-bounce reflectance
at the interface of two semi-infinite media. For the case of
real materials with finite thickness, sample thickness must be
sufficient to assume that there is no back reflectance. Large
attenuation due to a strong resonance is helpful here.

A fit to the 2H-MoS2 powder data using Eqs. �23� and

�25� 
Fig. 1�b�� allows us to extract �̃���=10.3, S̃E1u
=0.114,

and S̃A2u
=0.0036 �Table I�. We refer to these values as “ap-

parent oscillator parameters” because they are obtained from
direct fits to the measured powder spectrum. They are dis-
tinct from the “intrinsic parameters” that are useful for evalu-
ation of Born and ionic charges.

The apparent and intrinsic oscillator parameters are re-
lated according to Eqs. �24a�–�24c� by the oscillator orienta-
tion. For MoS2, one has
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�̃��� = 1 + 
�E1u
��� − 1��cos2�	E1u

��v + 
�A2u
��� − 1�


�cos2�	A2u
��v , �26a�

S̃E1u
= SE1u

�cos2�	E1u
��v , �26b�

S̃A2u
= SA2u

�cos2�	A2u
��v . �26c�

Here, v=0.7 is the relative density of the unoriented pressed
pellet compared with that of the single crystal.24,25 A bench-
mark is now needed to relate the apparent and intrinsic os-
cillator parameters.

Fortunately, the polarized infrared reflectance of a
2H-MoS2 single crystal has been studied by Wieting and
Verble.17 Fits to the reflectance yield ����E1u

=15.2, ����A2u
=6.2, SE1u

=0.20, and SA2u
=0.03 �Table I�. These intrinsic

parameters are appropriate benchmarks for our pellet
samples, because they are made of �m-sized powders, for
which the surface effect can be ignored as a good approxi-
mation.

In Eqs. �26a�–�26c�, the only unknowns are �cos2�	E1u
��

and �cos2�	A2u
��. Figure 1�b� shows a schematic view of the

pressed pellet of 2H powder. Since the polarizations of the
two modes are orthogonal, one has 	E1u

+	A2u
= �

2 . Hence,
�cos2�	E1u

��+ �cos2�	A2u
��=1, meaning that there is only one

unknown, say, �cos2�	E1u
��. Using Eqs. �26b� and �26c�, we

find two independent values as 0.81 and 0.83 in good agree-
ment with each other. To further check the self-consistency,
we calculated �̃��� using Eq. �26a� using an average value of
�cos2�	E1u

��=0.82, yielding �̃���=9.8, in excellent agree-
ment with that obtained by direct fitting techniques 
�̃���
=10.3�. In addition to confirming the validity of our ap-
proach, this self-consistency also shows that the pressed
powder sample of 2H-MoS2 will have the same Born effec-
tive charge as the single crystal,16,17 which, of course, it
must. The dielectric response �1 was calculated using the
intrinsic parameters of Ref. 16 and is plotted in the inset of
Fig. 1�b�. The dispersive response is typical of an anisotropic
insulator with two vibrational modes.

The availability of �30–70 nm average diameter nested
MoS2 nanoparticles provides an opportunity to investigate
the impact of finite length scale effects on chemical
bonding.16 Figure 1�c� displays a close-up view of the mea-
sured far-infrared reflectance along with an oscillator fit. The
apparent parameters obtained from this fit can be scaled to-
ward a set of intrinsic oscillator parameters using the orien-
tation and density corrections outlined above.16 From an
analysis of these intrinsic oscillator strengths and high-

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � 	

� � �

� � �

� � �

� � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � 	 �

� � 	 �

� � 	 �

� � 	 �

� � � �

� � � �

� � �

�
�

�
�

�
�

	
�



�

�

� � �  � � 
 � � � � �

� �

�

�

� �

�

� �

� � � � 	 � � � � � � � �

� � � � 	

�  �

� � � � � !

�

" # # $

� � �  � � 
 � � � � �

� �

�

�

� �

�

� �

�
�

�
�

�
�

	
�



�

�

�

� �

�

� �

� % � � � !

�

� � �

" # # $

� � � �

� � � � � � � � � � � �

�

�

�

	 �

	 �

�

� �

�

� �

�

� � �  � � 
 � � � � �

� �

�

� � � � � � � � � � � �


 	 �

�

	 �

� �

� �

� �

�

� �

�

� �

�

� � �  � � 
 � � � � �

� �

�

FIG. 1. �Color online� �a� Crystal structure of 2H-MoS2,Ref. 22,
schematic view of the displacement patterns of the infrared-active
modes, photo of a typical pressed pellet sample, and diagram for
tilted oscillators. �b� Close-up view of the 300 K reflectance spectra
of 2H-MoS2 powder. The �red� solid curve is experimental data and
the �blue� dashed line is a fit according to Eqs. �25�. The insets
show the dielectric constant and a schematic view of the 2H-MoS2

platelets in a pressed pellet sample. �c� Close-up view of the 300 K
reflectance of IF-MoS2. An identical color scheme and line type are
employed. The insets show the dielectric response and a high reso-
lution TEM image of an IF-MoS2 nanoparticle.

TABLE I. Apparent parameters extracted from an oscillator fit
to the measured reflectance spectrum of 2H-MoS2 powder, and the
intrinsic parameters from a single-crystal sample in Ref. 17.

S̃j
a �̃��� a Sj

b ���� b

E1u 0.114 10.3 0.20 15.2

A2u 0.0036 0.030 6.2

aApparent parameters obtained from an oscillator fitting analysis of
the measured powder spectrum.
bIntrinsic parameters obtained from a fit to the measured reflectance
of a single-crystal sample in Ref. 17.
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frequency dielectric constants along with mode frequencies,
we can extract Born and local effective charges for the
nanoparticles.16 In the intralayer direction, we find that the
Born effective charge of the nanoparticles is 0.69e in the
intralayer direction, significantly lower than that of the lay-
ered bulk �1.11e�. Here, e is the charge of an electron. We
attribute this difference to structural strain �and resulting
change in intralayer polarizability� in the nanoparticles.16

The Born effective charge of the nanoparticles remains un-
changed in the interlayer direction �0.52e�. The dielectric
constant was again calculated using intrinsic parameters of
Ref. 16 and is plotted in the inset of Fig. 1�c�. Clearly, the
dispersive response of the nanoparticles is different from that
of the bulk in the intralayer direction. They are the same in
the interlayer direction.

Extension of Born and local �or ionic� charges concepts to
nanomaterials is an important advance because most are not
�and may never be� available in an oriented form.9–14 Indeed,
emerging mechanical and tribological applications of nano-
scale MoS2 require bulk quantities of powder with careful
size-shape control but no orientational control. At the same
time, the relationship between engineering properties such as
solid-state lubrication26–28 and the microscopic aspects of
charge and bonding are an open and interesting question that
deserves further study.

VII. CONCLUSION

We present an application of the Lorentz model in which
fits to vibrational spectra or a Kramers Kronig analysis of the
reflectance are employed along with several useful formal-
isms to quantify microscopic charge and polarizability in un-
oriented �powdered� materials. This paper provides a system-
atic development of the operative equations and a discussion
of the conditions under which such techniques can be em-
ployed. We demonstrate the workability of our approach by
analyzing the vibrational response of a layered transition-
metal dichalcogenide, and we include an evaluation of Born
and local �or ionic charge� of its nanoscale analog to illus-
trate the modern utility. The extension to assess size effects
advances the field of nanoscience and, at the same time, re-
tains many attractive features of optical spectroscopy and the
traditional Lorentz model.
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APPENDIX: OTHER FRAMEWORKS

For applications, it can be convenient to use other forms
of Eq. �7� that are written in terms of parameters that are
more related to the experimental observations. Before step-
ping into that, we take a careful look at Eq. �7� and note that
there are only three independent parameters: �, q, and �0.

Other three variable sets offer equivalent expressions. Some
of these are detailed below.

1. ε(0), ε(�), and �TO
2 frameworks

This is a very useful framework because ��0�, ����, and
�TO

2 can all be straightforwardly extracted from the optical
spectra.

a. Collinear oscillators

Equation �8a� is already very close to employing this new
set of parameters. Let us define

��0� = �1 +
�/V

1 − ��/V� +
q2

�0mV�1 − ��/V�2

1

�TO
2 = ����

+
q2

�0mV�1 − ��/V�2

1

�TO
2 . �A1�

Then,

A =
q2

mV�1 − ��/V�2 = �TO
2 
��0� − �����

with parameters ��0�, ����, and �TO
2 , one can rewrite Eq. �7�

� = ���� + �TO
2 ��0� − ����

�TO
2 − �2 − i��

. �A2�

�i� �0
2

It is a bit tedious, but not so difficult to show that

�0
2 = �TO

2 ���� + 1/� − 1

��0� + 1/� − 1
.

�ii� Ionic effective charge

q2 = �0mV�1 − ��/V�2A = �0mV�1 − ��/V�2�TO
2 
��0� − �����

= �0mV
�TO

2 
��0� − �����
�2
���� + 1/� − 1�2 . �A3�

�iii� Born effective charge

qB
2 = �0mV�TO

2 
��0� − ����� �A4�

�iv� �LO
2

By definition, �LO, �=0 for a longitudinal mode. Using
Eq. �A2� �and ignoring i���, one has

0 = ���� + �TO
2 ��0� − ����

�TO
2 − �LO

2 �A5�

which gives the Lyddane-Sachs-Teller relation,3

�LO
2

�TO
2 =

��0�
����

�A6�

One can write out �LO
2 in terms of microscopic parameters

�, q, and �0 using the Lyddane-Sachs-Teller relation as fol-
lows:
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�LO
2 = �TO

2 ��0�
����

= �TO
2

���� + A
1

�TO
2

����
= �TO

2 +
A

����
= �0

2

−
q2�

�0mV�1 − ��/V�
+

q2

�0mV�1 − ��/V�2

1

1 +
�/V

1 − ��/V

= �0
2 +

q2

�0mV

1 − �

1 + �1 − ���/V
. �A7�

Note that �LO
2 is large than �0

2, while �TO
2 is smaller than �0

2.

b. Multiple collinear oscillators

� = 1 + �
j


� j��� − 1� + �
j

�TO,j
2 � j�0� − � j���

�TO,j
2 − �2 − i� j�

.

�A8�

c. Tilted oscillators

� = 1 + 
����� − 1���cos2�	�� + �TO
2 ��0� − ����

�TO
2 − �2 − i��

�cos2�	�� .

�A9�

d. Multiple tilted oscillators

��	 j�� = 1 + �
j


� j��� − 1�cos2�	 j�

+ �
j

�TO,j
2 � j�0� − � j���

�TO,j
2 − �2 − i� j�

cos2�	 j�

�̃ = ���	 j��� = 1 + �
j


� j��� − 1��cos2�	 j��

+ �
j

�TO,j
2 � j�0� − � j���

�TO,j
2 − �2 − i� j�

�cos2�	 j�� �A10�

2. ε(�), �TO
2 , and �LO

2 frameworks

a. Collinear oscillators

Another choice is to use ����, �TO
2 , and �LO

2 . Using the
Lyddane-Sachs-Teller relation, Eq. �A6�, one can eliminate
��0�, which yields

� = ���� + ����
�LO

2 − �TO
2

�TO
2 − �2 − i��

. �A11�

�i� Ionic effective charge

q2 = �0mV�1 − ��/V�2A = �0mV�1 − ��/V�2������LO
2 − �TO

2 �

= �0mV
������LO

2 − �TO
2 �

�2
���� + 1/� − 1�2 . �A12�

�ii� Born effective charge

qB
2 = �0mV������LO

2 − �TO
2 � . �A13�

b. Multiple collinear oscillators

� = 1 + �
j


� j��� − 1� + �
j

� j���
�LO,j

2 − �TO,j
2

�TO,j
2 − �2 − i� j�

.

�A14�

c. Tilted oscillators

� = 1 + 
���� − 1��cos2�	�� + ����
�LO

2 − �TO,j
2

�TO
2 − �2 − i��

�cos2�	�� .

�A15�

d. Multiple tilted oscillators

��	 j�� = 1 + �
j


� j��� − 1�cos2�	 j�

+ �
j

� j���
�LO,j

2 − �TO,j
2

�TO,j
2 − �2 − i� j�

cos2�	 j� �A16�

�̃ = ���	 j��� = 1 + �
j


� j��� − 1��cos2�	 j��

+ �
j

� j���
��LO,j

2 − �TO,j
2 �

�TO,j
2 − �2 − i� j�

�cos2�	 j�� . �A17�
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